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Abstract

Statistical analysis methods are generally derived under the assumption

that forecast errors are strictly random and zero in the mean� If the short�term

forecast� used as the background �eld in the statistical analysis equation� is in

fact biased� so will the resulting analysis be biased� The only way to properly

account for bias in a statistical analysis is to do so explicitly� by estimating the

forecast bias and then correcting the forecast prior to analysis�

We present a rigorous method for estimating forecast bias by means of data

assimilation� based on an unbiased subset of the observing system� The result

is a sequential bias estimation and correction algorithm� whose implementation

involves existing components of operational statistical analysis systems� The

algorithm is designed to perform on�line� in the context of suboptimal data as�

similation methods which are based on approximate information about forecast

and observation error covariances� The added computational cost of incorporat�

ing the algorithm into an operational system roughly amounts to one additional

solution of the statistical analysis equation� for a limited number of observa�

tions� O	�line forecast bias estimates based on previously produced assimilated

data sets can be produced as well� using an existing analysis system�

We show that our sequential bias estimation algorithm �ts into a broader

theoretical framework provided by the separate�bias estimation approach of

estimation theory� In this framework the bias parameters are de�ned rather

generally and can be used to describe systematic model errors and observational

bias as well� We illustrate the application of on�line forecast bias estimation and

correction in a simulated data assimilation experiment with a one�dimensional

forced�dissipative shallow�water model� A climate error is introduced into the

forecast model via topographic forcing� while random errors are generated by

stochastic forcing� In this simple experiment our algorithm is well able to

estimate and correct the forecast bias caused by this systematic error� and the

climate error in the assimilated data set is virtually eliminated as a result�
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� Introduction

Atmospheric data assimilation systems combine observational data with a background

�eld� usually consisting of a short�term model forecast� in order to produce accurate

and comprehensive analyses of atmospheric �elds and parameters� Optimal analysis

accuracy� in a proper statistical sense� is obtained when the ensemble means and

ensemble covariances of the error �elds associated with the model forecasts and with

the observations are known and accurately speci�ed� Since these statistics are not

generally available� actual implementations of statistical data assimilation algorithms

are always suboptimal�

A large portion of the research pertaining to the speci�cation of error statistics in data

assimilation systems has concerned covariance modeling� which is the development of

methods for representing and estimating forecast and observation error covariances�

Error statistics required for optimal interpolation �OI� are usually estimated from

time series of observed�minus�forecast residuals �Rutherford ��
�� Hollingsworth and

L�onnberg ����� L�onnberg and Hollingsworth ����� Daley ����� Bartello and Mitchell

������ Advanced statistical data assimilation techniques aim to improve the accuracy

of forecast error statistics by taking into account the e�ect of model dynamics on the

evolution of forecast errors �Ghil et al� ����� Dee ����� Cohn and Todling ������

The point of departure in covariance modeling is complete knowledge of the means�

Most often it is simply assumed that the forecast model as well as the observing in�

struments are unbiased� that is� the mean errors are zero or they have been removed�

Identi�cation and correction of observational bias is an important component of oper�

ational data assimilation systems� Examples include radiation correction procedures
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for radiosonde observations �Julian ������ and bias removal schemes for cloud�cleared

radiance �Eyre ������ Some numerical weather prediction centers use ��hour model

forecasts to provide a reference for removing bias from the observations �Baker ������

at the risk of perpetuating any existing biases in the forecast itself�

The term forecast bias is synonymous with non�zero mean forecast error� if present�

the forecast model is a biased estimator of the actual atmosphere� Forecast bias is

due to the presence of systematic errors in the forecast model� such as are caused

by incorrect physical parameterizations� numerical dispersion� or faulty boundary

conditions� Often the e�ects of such errors persist for a certain amount of time� and

are detected when speci�c aspects of the model climatology di�er from the actual

atmospheric climatology as derived from observations� Although it is well known

that systematic errors contribute signi�cantly to forecast errors �see� for example�

Reynolds et al� ������ the problem of estimating and properly accounting for forecast

bias in data assimilation systems has received little attention so far�

Saha ������ has estimated forecast bias in the U�S� National Centers for Environ�

mental Predictions �NCEP�� model by averaging one month of di�erences between

one�day forecasts and the verifying operational analyses� It is not uncommon to evalu�

ate systematic errors in a forecast model by using analyses as a reference �e�g�� Takacs

and Suarez ������ The success of this approach obviously depends on the validity of

the underlying assumption that the analyses themselves are unbiased� Tenenbaum

������ has shown by using independent �i�e�� not assimilated� aircraft data that an�

alyzed jet stream winds obtained from various operational centers are signi�cantly

biased� The likely explanation for this is that the analyses are produced from biased

�Formerly the National Meteorological Center �NMC��
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forecasts� sparse observations of jet stream winds will� at best� only partially remove

this bias� Thus� if forecast bias is a problem� then it is not safe to assume that

analyses are unbiased�

The purpose of this article is to present a rigorous� yet practical� method for estimat�

ing forecast bias in an atmospheric data assimilation system� The method is fully

consistent with the state�space approach of estimation theory� originally presented

in the context of atmospheric data assimilation by Ghil et al� ������� This theory

requires explicit assumptions on statistics of observation errors and on forecast errors�

possibly including unknown systematic �i�e�� non�zero mean� components� From these

assumptions it is then possible to derive a consistent set of algorithms for estimating

forecast bias and for producing unbiased analyses�

The basic assumption we adopt here is that there exists a subset of the observing

system for which bias is negligible compared to the forecast bias� In addition� we

explicitly de�ne forecast bias as the time�mean �climatological� error in the short�

term forecast� and this is the quantity we set out to estimate� We are then able to

derive a rigorous sequential forecast bias estimation algorithm� whose implementation

involves existing components of statistical data assimilation systems� Consequently

one can incorporate forecast bias estimation in an operational system with only minor

modi�cations� The algorithm is designed to perform in the context of suboptimal data

assimilation methods in which error covariance information is only approximate� The

added computational cost of on�line forecast bias estimation is roughly one additional

solution of the statistical analysis equation� O��line forecast bias estimates can be

produced as well� using an existing data assimilation system and stored output from

a previous data assimilation run�
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To provide our bias estimation algorithm with a �rm theoretical footing� we brie�y

review the so�called separate�bias estimation approach of estimation theory� Friedland

������ formulated the bias estimation problem for a class of linear stochastic�dynamic

systems with constant bias parameters� and showed that estimates of these parameters

can be obtained separately from the estimates of the dynamic state variables� Other

authors subsequently clari�ed and extended Friedland�s formulation �e�g�� Tacker and

Lee ��
�� Mendel ��
�� Friedland ��
�� Ignagni ����� Ignagni ���
� Zhou et al� ������

Separate�bias estimation algorithms can be applied more generally to estimate model

error parameters and observational bias as well�

The organization of this paper is as follows� In section � we discuss forecast errors

and their statistics� and show that the usual statistical analysis equation produces

biased analyses in the presence of forecast bias� We show in section � how forecast

bias can be estimated sequentially in a data assimilation system� provided unbiased

�or bias�corrected� observations are available� Section 	 contains a concise review of

the bias estimation theory originally developed by Friedland ������� and there we

reconcile our approach to forecast bias estimation with this theory� In section � we

discuss certain practical aspects of forecast bias estimation� for o��line as well as on�

line implementations� Here we also describe a simple numerical experiment based on a

linear� one�dimensional shallow water model with topographic and stochastic forcing�

The climate of the forecast model in this experiment di�ers from the simulated �true�

climate� and we show that our algorithm successfully corrects this systematic error�

We brie�y conclude in section ��

	



� Bias and the analysis equation

Here we show that a biased forecast invariably leads to a biased analysis� indepen�

dently of the weights used in the analysis update� Bias can be reduced by assigning

more weight to the observations� but the result will be an increasingly noisy analysis�

We also brie�y discuss the distinction between ensemble means and time averages� We

�rst de�ne forecast and observation errors and their �rst� and second�order statistics�

��� Forecast and observation errors�

Suppose that the n�vector wf
k is a model forecast valid for time tk� and wt

k is the

unknown true state of the atmosphere at that time� It is convenient to de�ne both

quantities in terms of the same state representation� wt
k is an n�vector as well� con�

taining� for example� the true grid�point values or spectral coe�cients� The forecast

error is then simply

�
f
k � wf

k �wt
k� ���

For a pk�vector wo
k of measurements generated by a particular instrument at time tk�

the observation error is de�ned by

�ok � wo
k � hk�w

t
k�� ���

The nonlinear pk�vector function hk is the discrete forward observation operator �e�g��

Cohn ������ mapping model variables to the data type associated with the instrument�

We introduce the following notation for the forecast error mean and covariance

b
f
k � h�fki� P

f
k �

D
��fk � b

f
k���fk � b

f
k�T

E
� ���

�



and for the observation error mean and covariance

bok � h�oki� Rk �
D
��ok � bo

k���
o
k � bo

k�
T
E
� �	�

Here h�i denotes the ensemble average or expectation operator� whose proper de�nition

involves the joint probability distribution of forecast and observation errors�

In order to simplify the presentation we will assume throughout that observation and

forecast errors are uncorrelated�

D
��ok � bo

k���
f
k � bf

k�T
E

� 
� ���

Removal of this assumption does not introduce any signi�cant complications in what

follows�

A forecast wf
k is said to be biased if the mean forecast error bf

k is nonzero� bf
k is

the forecast bias� Similarly� the observations wo
k are said to be biased if the mean

observation error or observation bias bo
k is nonzero�

��� Ensemble means vs� time averages�

We de�ned forecast and observation error statistics in terms of ensemble means� these

are averages over all possible realizations of the errors� weighted by their probability

of occurrence� This de�nition is appropriate since the optimality criteria underlying

state estimation algorithms are generally formulated in terms of probability distri�

butions of the stochastic�dynamic state variables �Jazwinski ��

� Cohn ������ For

example� the optimal estimate �in a rather broad sense� of the true atmospheric state

wt
k given any set W of observations is provided by the conditional �ensemble� mean

hwt
kjW i� This quantity is de�ned in terms of the joint probability distributions of wt

k

and W �

�



Note� however� that the ensemble of all possible realizations of the actual atmospheric

state is di�erent from the ensemble of all possible realizations of the modeled atmo�

spheric state� both in concept and in substance� Ensemble forecasting �Toth and

Kalnay ����� Houtekamer et al� ����� involves di�erent realizations of model fore�

casts obtained by perturbing initial conditions and�or selected model parameters� the

number of such realizations is limited only by the computing resources at hand� The

ensemble of actual atmospheric states� on the other hand� is nothing more than a

theoretical device� Only a single member of this ensemble exists� and only this single

physical realization of the atmospheric state evolution is in fact observable� all general

inferences about the ensemble rely on theory� For example� to assert that properties

of the ensemble of actual states can be emulated by generating an ensemble of mod�

eled states involves assumptions on the exact relationship between the model and the

real atmosphere�

In practice� �rst� and second�order forecast and observation error statistics are com�

puted by averaging over time� usually over periods on the order of a month or so

�Rutherford ��
�� Schlatter ��
�� Lorenc ����� Bartello and Mitchell ������ Sub�

stitution of ensemble means by some other kind of average is� of course� a practical

necessity� One could attempt to justify this substitution by assuming ergodicity of

the stochastic processes involved� although this would seem to be rather farfetched�

We will not further address this issue here but simply keep in mind the practical

de�nition of forecast and observation error statistics in terms of time averages as an

alternative to the theoretical de�nition in terms of ensemble means�

Our notion of forecast bias in particular is usually associated with errors that per�

sist for a certain amount of time� Such systematic errors are detectable when they






cause speci�c aspects of the model climatology to di�er from the actual atmospheric

climatology� as derived from observations�

��� The analysis equation in the presence of bias�

If the forecast bias were known� one could compute an unbiased forecast

ewf
k � w

f
k � b

f
k � ���

Similarly�

ewo
k � wo

k � bo
k �
�

would be a set of unbiased observations� Throughout this paper we will use tildes to

indicate that a quantity is either unbiased �in case of an estimate� or that its mean

is zero �in case of a random vector��

To simplify the presentation we now assume that the observation operator is linear�

hk��� � Hk� in ���� with Hk a pk �n matrix� The statistical analysis equation which

properly accounts for bias is then

ewa
k � ewf

k �Kk

h ewo
k �Hk ewf

k

i
� ���

where ewa
k is the analysis at time tk� and Kk is an n� pk gain matrix which takes into

account the relative accuracies of forecast and observations� Independently of the

speci�cation of this gain� the analysis is an unbiased estimate of the true atmospheric

state�

ba
k � h�aki � 
� �ak � ewa

k �wt
k� ���

If� in particular�

Kk � P
f

kH
T
k

h
HkP

f

kH
T
k �Rk

i��
� ��
�

�



then ��� provides the linear minimum variance estimate of the true atmospheric state

given all observations up to and including time tk �Anderson � Moore ��
�� section

�����

In operational data assimilation systems the bias terms bo
k�b

f
k are usually unknown

and hence neglected� Using wo
k�w

f
k in place of ewo

k� ewf
k the analysis equation is

wa
k � w

f
k �Kk

h
wo

k �Hkw
f
k

i
� ����

Taking the ensemble average and using ��� and �
� implies

ba
k � bf

k �Kk

h
bo
k �Hkb

f
k

i
� ����

which shows that� for any gain Kk� the analysis is biased unless the forecast as well

as the observations happen to be unbiased� Equation �� also shows that the mean

analysis increment �the second term on the right�hand side� does not provide a good

estimate of forecast bias� even when bo
k � 
� since the gain coe�cients are generally

less than one�

Given an analysis equation of the form ���� in which bias is not explicitly accounted

for� it is nevertheless interesting to consider the particular gain Kk which leads to the

smallest total �systematic plus random� root�mean�square �rms� analysis error� This

is important from a practical point of view since ���� is precisely the equation being

solved in operational sequential data assimilation systems� It is not di�cult to show

that the rms analysis error due to ���� is minimal for

Kk � P
f

kH
T
k

h
HkP

f

kH
T
k �Rk

i��
� ����

with

P
f

k �
D
�
f
k��fk�T

E
� P

f
k � b

f
k�bf

k�T � ��	�

Rk �
D
�ok��ok�

T
E

� Rk � bo
k�b

o
k�T � ����
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The analysis resulting from ���� with Kk � Kk is still biased� as is true for any gain

Kk� An unbiased analysis can be produced only if explicit estimates of forecast bias

and observation bias are available�

��� A scalar example�

Suppose that wf
k and wo

k are both scalars� with

bfk � h�fki � b� P f
k � h��fk � b��i � ��� ����

bok � h�oki � 
� Rk � h��ok��i � ��� ��
�

Using ���� the optimal analysis is given by

wa
k �

�

�
� ewf

k � wo
k� �

�

�
�wf

k � b � wo
k�� ����

for which

bak � 
� h��ak��i �
�

�
��� ����

Ignoring forecast bias as in ���� would give instead

wa
k �

�

�
�wf

k � wo
k�� ��
�

which is biased�

bak �
�

�
b� h��ak��i �

�

	
b� �

�

�
��� ����

The magnitude of the mean analysis increment in this case is b�� and would under�

estimate the forecast bias by a factor of two�

Note that the analysis reduces the bias but does not remove it� Suppose now that

b � �� i�e� the typical magnitude of the random component of forecast error is equal

�




to that of the systematic component� Increasing the weight of the observation as in

���� then gives

wa
k �

�

�
�wf

k � �wo
k�� ����

which is still biased but has somewhat less total variance�

bak �
�

�
b� h��ak��i �

�

�
b� �

�

�
��� ����

Drawing the analysis even closer to the observation would further reduce the bias

but increase the total analysis error variance� due to the random error component�

Figure � summarizes this example� it shows the dependence on the weight K of the

analysis bias� the standard deviation of the random component of analysis error�

and the total expected analysis error if ���� is used� This example shows clearly

that� unless bias is explicitly accounted for� it can be reduced only at the expense of

increasing the noisiness of the analysis�
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Figure �� Analysis error as a function of the scalar gain coe�cient K� when
forecast bias is not explicitly accounted for in the analysis� for
the scalar example presented in section �� The dotted horizontal
line indicates the minimum analysis error level obtainable with an
unbiased forecast�
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� Sequential bias estimation

Forecast bias can be estimated by comparing forecasts with observations� i�e�� from

observed�minus�forecast residuals� Without additional information it is not possible

to separate the e�ect of forecast bias on these residuals from that of biased observa�

tions� We therefore assume� in this section� that a subset of the observing system is

unbiased� This then leads to a sequential estimation algorithm for the time�averaged

forecast error� First� we brie�y discuss observed�minus�forecast residuals and their

�rst� and second�order statistics�

��� Observed�minus�forecast residuals�

The observation operator introduced in ��� is a device for comparing forecasts with

observations� The observed�minus�forecast residuals de�ned by

vk � wo
k � hk�w

f
k � ��	�

are routinely computed in operational data assimilation systems� The residual pk�

vector time series fvkg is often referred to as the innovation sequence� although this

terminology is not entirely correct since it presumes optimality of the data assimilation

algorithm �Anderson � Moore ��
�� section ����� In any case� these residuals contain

important information about the actual observation and forecast errors� since

vk � �ok �Hk�
f
k � ����

where the linearized observation operator Hk� a pk � n�matrix� is de�ned by

Hk �
�hk

�w

�����
w�w

f

k

� ����

��



Equation �� is obtained by linearizing ��	� about the forecast state and using ���

and ���� The accuracy of the approximation ���� depends on the size of the forecast

errors� it is exact for linear observation operators�

The residual mean and covariance are easily obtained from �����

hvki � bo
k �Hkb

f
k � ��
�

D
�vk � hvki��vk � hvki�

T
E
� Rk �HkP

f
kH

T
k � ����

We used the additional approximation hHk �i �Hkh�i� for linear observation operators

��
� and ���� are both exact� Compare ���� with ��
�� speci�cation of optimal weights

in the analysis update requires complete knowledge of the residual covariance�

��� A state�space description of forecast bias�

We now assume that there exists a subset of the observing system for which bias is

negligible�

bo
k � 
� ����

or� rather� that jbo
kj � jHkb

f
k j in some meaningful sense� This amounts to the

requirement that systematic errors� if any� have been e�ectively removed from the

observations� In that case ���� can be re�written

vk � �Hkb
f
k � e�k� ��
�

where e�k is a noise term whose �rst� and second�order statistics are

he�ki � 
� ����

he�k
e�T
k i � Rk �HkP

f
kH

T
k � ����

�	



This follows from ���� and ���� by noting that e�k � vk � hvki and using �����

Equation ��
� can be regarded as a measurement model for the forecast bias bf
k � It ex�

presses the relationship between the observations� the forecast� and the actual forecast

bias under the assumption ����� If observations alone are insu�cient to completely

determine forecast bias� they must be supplemented with additional information� We

therefore introduce a state model for bf
k which describes its evolution in time� For�

mulation of the state model in fact amounts to an explicit de�nition of the quantity

we wish to estimate� i�e�� of our notion of forecast bias�

Our practical goal is to estimate the time�mean forecast error� averaged over a time

period which exceeds synoptic time scales� By de�nition� this quantity is approxi�

mately constant in time� so that a reasonable state model for bf
k is the persistence

model

bf
k � bf

k��� ����

This model will serve to predict forecast bias for time tk based on a previous bias

estimate valid for time tk���

Forecast errors are state�dependent� and the evolution in time of forecast bias is

therefore likely to be more complex than the persistence model ���� suggests� For

example� the presence of a systematic error in the convective parameterization of a

forecast model will result in systematic but transient short�term forecast errors in

convectively active regions� Tibaldi and Molteni ����
� and Miyakoda and Sirutis

����
� discuss systematic forecast errors which occur during the onset of blocking�

and their impact on forecast skill� It will be a challenge to express this type of

��



information explicitly in terms of a bias evolution model of a more general form� say�

bf
k � bf

k�� � g�wt
k���� �����

where g is some nonlinear operator�

Equations ��
� and ���� �or ������ together constitute a state�space description �An�

derson and Moore ��
�� of the forecast bias bf
k � Given such a description� the esti�

mation of this quantity becomes a standard problem in estimation theory� Gri�th

and Nichols ������ pursue a similar approach� but in the context of variational data

assimilation� They propose to extend the variational continuous assimilation method

�Derber ����� by introducing a deterministic evolution model for model error� anal�

ogous to ������ The model error is then treated as part of the control variable in the

variational formulation of the data assimilation problem� and can be estimated along

with the forecast trajectory using adjoint techniques�

��� Sequential estimation of forecast bias�

A sequential bias estimation algorithm producing estimates �bk of the forecast bias

b
f
k can be de�ned recursively as follows� Given a previous bias estimate �bk��� the

persistence model ���� predicts the forecast bias at time tk simply by

�b�
k � �bk��� ��	�

In case of the more general model ����� the bias prediction might be

�b�
k � �bk�� � g��bk���w

a
k���� ��	��

An updated estimate �bk of forecast bias can be obtained by combining the bias pre�

diction �b�
k with the measurements provided by ��
�� It is easy to show from ��
����

��



that the least�variance unbiased linear combination of prediction and measurements

is given by

�bk � �b�
k � Lk

h
vk �Hk

�b�
k

i
� ����

with

Lk � Pb�

k H
T
k

h
HkP

f
kH

T
k �Rk

i��
� ����

where Pb�

k is the error covariance of the bias estimate �b�
k �

Pb�

k �
D
��b�

k � bf
k���b�

k � bf
k�T

E
� ��
�

The algorithm must be initialized with an a priori bias estimate �b�� and it requires

speci�cation of the error covariances Pb�

k �

For a linear stochastic�dynamic bias evolution model �in particular� for the persistence

model ����� it is possible to derive recursions for the covariances Pb�

k � as we shall show

in section 	� Supplemented by these recursions� the algorithm ��	���� is just the

Kalman �lter for the system ��
� ���� It will be more practical� however� to specify

the covariance Pb�

k directly�that is� without recourse to the covariance equations�

analogous to the direct modeling of forecast and observation error covariances in

operational data assimilation systems� We will return to the issue of estimation error

covariance modeling in section ��

In case of a linear bias model the bias estimate �bk de�ned by ���� is unbiased� provided

the observations are unbiased�

h�bki � b
f
k � ����

This statement follows directly from ���� combined with ����� and does not depend

on the particular gain Lk� The least�variance property of the estimator� on the other

�




hand� holds only if the error covariances Pb�

k � Pf
k � and Rk are correctly speci�ed in

����� Actual implementations of the algorithm will generally be suboptimal�

Stability properties of the sequential bias estimation algorithm can be stated in terms

of stability properties of the Kalman �lter� For linear bias models the convergence of

�bk to bf
k �in the statistical mean�square sense� depends on observability and control�

lability properties of the state�space system ��
��� or ����� In practical terms� and

for the persistence model ���� in particular� this means that the �unbiased� observ�

ing system must provide su�cient coverage during the maximum time interval over

which forecast bias can be presumed constant� Bias estimates at locations where no

unbiased observations are available will be determined partly by the a priori bias es�

timate �b� there� and partly by the speci�cation of the error covariances Pb�

k between

locations within and without the observed regions�

��



	 Bias estimation theory

In this section we summarize the approach to bias estimation �rst developed by

Friedland ������ and subsequently clari�ed and extended by others �Tacker and Lee

��
�� Mendel ��
�� Friedland ��
�� Ignagni ����� Ignagni ���
� Zhou et al� ������

The work of these authors provides a rigorous framework for the sequential bias

estimation algorithm presented in the previous section� and can be applied more

generally to the estimation of model error parameters and�or observational bias�

��� General framework�

Friedland ������ considered the problem of estimating the true state wt
k of a linear

stochastic�dynamic process in the presence of a set of constant �but unknown� bias

parameters �� Other than being constant� the bias parameters are rather generally

de�ned� and may a�ect both the state model and the measurement model� In partic�

ular� it is not assumed that observations are unbiased� The theory has been developed

for both continuous and discrete processes� here we present only the latter�

The framework assumes linear stochastic�dynamic state and measurement models of

the form�

wt
k � Akw

t
k�� �Bk� � e�k� ����

wo
k � Hkw

t
k�� �Ck� � e�k� �	
�

Here Ak�Bk�Hk�Ck are known matrices of appropriate dimensions� and e�k� e�k are

mutually independent white Gaussian vector processes with known �rst� and second�

��



order statistics

he�ki � 
�
�e�ke�Tk

�
� Qk� �	��

he�ki � 
�
De�k

e�T
k

E
� Rk� �	��

If the bias parameters � were known �or if Bk � Ck � 
� the optimal state estimate

at time tk based on all observations up to that time would be given by the usual

Kalman �lter equations�

Note that the bias parameters can enter the problem in di�erent ways� depending

on the de�nition of the matrices Bk and Ck� When Bk � 
 the state model ���� is

unbiased� in our application this corresponds to an unbiased forecast model� When

Ck � 
 the observations are unbiased� Generally� the term Bk� represents the e�ect

of unknown model error parameters entering into the state evolution� The bias vector

� may consist of just a few parameters�say� unknown spectral coe�cients of model

error�or it may be dimensionally compatible with the true state wt
k�

��� Optimal state estimation in the presence of bias�

Optimal estimates of the true state wt
k and the bias parameters � can be obtained

by applying the standard technique of augmenting the state vector with the bias

parameters �e�g�� Jazwinski ��

� section ��	�� Linear state and measurement models

for the augmented state follow from ���� and �	
� together with the statement that the

bias parameters are constant� The Kalman �lter for this system then simultaneously

provides the optimal estimates of wt
k and �� The obvious drawback to this approach

is that it is not a simple matter to modify an existing implementation of a state

estimation algorithm by introducing state augmentation�

�




Friedland showed that the Kalman �lter equations for the augmented state are alge�

braically equivalent to two loosely coupled sets of recursions� resulting in a two�stage

estimation algorithm� The �rst stage consists of the usual �lter equations for the state

wt
k� obtained by ignoring the bias altogether� The second stage provides estimates of

the bias parameters � based on the output of the �rst stage� Results from the two

stages can then be combined to produce the optimal �unbiased� state estimates�

This two�stage approach to concurrent state and bias estimation is known as separate�

bias estimation in the literature� The �rst stage in the algorithm was originally called

the bias�free state estimator by Friedland� since none of the equations in this stage

involve bias estimates� We have found this terminology to be potentially confusing

since it suggests that bias�free state estimates are unbiased� which is not actually

the case� We therefore prefer to use the term bias�blind state estimator� which more

clearly indicates that bias is present yet ignored in that part of the algorithm�

Friedland�s two�stage approach is attractive for many applications because the bias

estimator can be implemented as a supplemental component to an existing �bias�

blind� state estimator� the design of the state estimator is una�ected by the addition

of the bias estimator� The latter can be activated as needed� e�g� when output diag�

nostics indicate signi�cant bias problems� We include the complete set of algorithms

and some important properties here without proof� see Friedland ������ ��
�� and

Ignagni ������ ���
� for details�

��



Bias�blind state estimator�

The bias�blind state estimates wf
k �w

a
k are given by

w
f
k � Akw

a
k��� �	��

wa
k � wf

k �Kk

h
wo

k �Hkw
f
k

i
� �		�

where the gain Kk is

Kk � S
f
kH

T
k

h
HkS

f
kH

T
k �Rk

i��
� �	��

and S
f
k is de�ned recursively by

Sf
k � AkS

a
k��A

T
k �Qk� �	��

Sa
k � �I�KkHk Sf

k � �	
�

In the absence of bias �	��	
� are just the Kalman �lter equations�

Bias estimator�

Bias parameter estimates ��k are given by

��k � ��k�� �K
�
k

h
wo

k �Hkw
f
k �Tk

��k��

i
� �	��

where the gain K
�
k is

K
�
k � P

�
k��T

T
k

h
TkP

�
k��T

T
k �HkS

f
kH

T
k �Rk

i��
� �	��

and P
�
k is de�ned recursively by

P�
k �

h
I�K�

kTk

i
P�

k��� ��
�

The matrix Tk is de�ned by the following set of recursions�

Tk � HkUk �Ck� ����

Uk � AkVk�� �Bk� ����

Vk � Uk �KkTk� ����

The last equation in this set depends on the state estimator gain Kk�



Bias correction�

Unbiased state estimates ewf
k � ewa

k are obtained by

ewf
k � w

f
k �Uk

��k��� ��	�

ewa
k � wa

k �Vk
��k� ����

Initialization�

The recursions for the two estimators are initialized by specifying a priori state and
bias estimates wa

�
and ��

�
as well as the matrices Sa

�
� P�

�
� and V�� Generally� if it is

assumed that

wt
�

� w� �M���
D
w��

T
E

� 
 ����

with M� a known matrix� then

Sa
�

�
D
�wa

�
�w���w

a
�
�w��

T
E
� ��
�

P�
�

�
D
���

�
� �����

�
� ��T

E
� ����

V� � M�� ����

��� Properties and some extensions�

Friedland ������ showed that the ��k de�ned by �	����� are optimal estimates of the

bias parameters �� given all observations up to and including time tk� The matrices

P
�
k are the actual estimation error covariances�

P
�
k �

D
���k � �����k � ��T

E
� ��
�

��



The unbiased state estimates ewf
k � ewa

k de�ned by ��	� ��� are optimal� with error

covariances given by

P
f
k �

D
� ewf

k �wt
k�� ewf

k �wt
k�T

E
� S

f
k �UkP

�
k��U

T
k � ����

Pa
k �

D
� ewa

k �wt
k�� ewa

k �wt
k�T

E
� Sa

k �VkP
�

kV
T
k � ����

The cross�covariances between the state estimates and the bias estimates are

D
� ewf

k �wt
k����k�� � ��T

E
� UkP

�
k��� ����

D
� ewa

k �wt
k����k � ��T

E
� VkP

�
k � ��	�

Unless � � 
 the bias�blind state estimator �	��	
� is suboptimal and produces

biased state estimates wf
k �w

a
k� The quantities Sf

k �S
a
k are covariance matrices� i�e��

they are in fact positive semide�nite� but ���� ��� show that they di�er from the

actual estimation error covariances Pf

k �P
a
k for the unbiased estimates ewf

k � ewa
k� One

can prove� however� that the covariances Sf

k �S
a
k do converge to P

f

k �P
a
k as k ���

provided the model system ���� 	
� is uniformly completely observable and uniformly

completely controllable� In that case the second term in each of the equations ���� ���

approaches zero as the bias parameter estimates converge� since the Uk�Vk de�ned

by ������� will remain bounded due to the stability of the bias�blind state estimator�

Several extensions to the two�stage state and bias estimation algorithm have been

proposed based on natural generalizations of the linear� constant�bias framework pro�

vided by the model system ���� 	
�� Various authors �Tacker and Lee ��
�� Ignani

���
� have considered model systems in which the bias parameters � are allowed to

vary in time� Optimal bias and state estimates can still be obtained using simple

extensions of Friedland�s two�stage estimator� provided the variation in time of the

bias parameters can be modeled and the resulting model system is still linear� Oth�

�	



ers �Mendel ��
�� Zhou et al� ����� have proposed modi�cations to the algorithms

designed to handle nonlinear state models� the resulting estimates are� of course�

suboptimal�

��� Forecast bias estimation�

Using our de�nition ��� of forecast bias in section ��

b
f
k � hwf

k �wt
ki ����

� h ewf
k �wt

ki � hUk
��k��i ����

� �Uk� ��
�

where we used ��	� and the fact that ewf
k and ��k�� are unbiased estimates of the true

state wt
k and the bias parameters �� respectively� In fact� ��k is an unbiased estimate

of � as well� so that

�b�
k � �Uk

��k��� ����

�bk � �Uk
��k ����

are both estimates of forecast bias bf
k� Their error covariances are

Pb�

k �
D
��b�

k � bf
k���b�

k � bf
k�T

E
� UkP

�
k��U

T
k � �

�

Pb
k �

D
��bk � b

f
k���bk � b

f
k�T

E
� UkP

�
kU

T
k � �
��

using ��
��

The estimate �b�
k predicts forecast bias at time tk based on data prior to tk� the

corrected �unbiased� forecast ��	� is

ewf

k � w
f

k �
�b�
k � �
��

��



The second estimate �bk is an update of the �rst� using additional data available at time

tk� Optimality of the bias estimator implies that these are the least�variance estimates

given the observations upon which they are based� in particular� the updated estimate

�bk is more accurate than �b�
k �

We will now review the sequential forecast bias estimation algorithm ��	���� devel�

oped in section �� using the theory presented here� Consider the special case in which

the measurement model �	
� is una�ected by the bias parameters� i�e��

Ck � 
� �
��

This corresponds to the assumption that observations are unbiased� Equations ����

��� then reduce to

Tk � HkUk� �
	�

Uk � Ak �I�Kk��Hk�� Uk�� �Bk� �
��

Multiplying �	�� by �Uk and using ����

� and �
	�� we obtain the forecast bias

update equation

�bk � �b�
k � Lk

h
wo

k �Hkw
f
k �Hk

�b�
k

i
� �
��

with

Lk � UkK
�
k �

�

� Pb�

k H
T
k

h
HkP

b�

k HT
k �HkS

f

kH
T
k �Rk

i��
� �
��

Compare �
�� 
�� with ���� ���� they are identical by virtue of ��	�� ����� and �

��

The covariance update equation implied by ��
� is

Pb
k � �I�LkHk Pb�

k � �
��

��



where we used �

� and �

� 
���

Equations for the forecast bias prediction �b�
k and its error covariance Pb�

k can be sim�

ilarly obtained� For prediction� however� it is necessary to de�ne the precise relation�

ship between the bias parameters � and the evolution of the true state� represented

by the matrix Bk in the state model ����� In section � we took a somewhat di�erent

approach by directly modeling the evolution in time of the forecast bias itself� In

case of the persistence model ���� this is easily reconciled with the present theory� as

follows� If the forecast bias bf
k is presumed constant in time� ��
� implies that

Uk � U � const� ��
�

But then ���� ��� together imply

�b�
k � �bk��� ����

which is just ��	�� Similarly� �

� 
�� together imply

Pb�

k � Pb
k��� ����

Note from �
�� that ��
� corresponds to the particular choice

Bk � fI�Ak �I�Kk��Hk�� gU ����

in the state model ����� for an arbitrary �but constant� matrix U� It would be

farfetched to assume that the model ���� with this choice of Bk provides a realis�

tic description of the actual state evolution� For this and other practical reasons it

makes sense to bypass the covariance equations �
�� ��� altogether and instead ap�

proximate the estimation error covariances directly� as is usually done in operational

data assimilation systems�

�




��� The unbiased analysis equation revisited�

Still assuming unbiased observations �Ck � 
� it follows from ���� and ���� that

Vk � �I�KkHk Uk ��	�

which� together with ���� ��� implies

ewa
k � wa

k � �I�KkHk �bk� ����

showing how the updated forecast bias estimate �bk may be used to obtain the optimal

�unbiased� analysis�

Equation ���� can be used to re�derive the unbiased analysis equation ���� as follows�

Using �		� and �
���

ewa
k � w

f
k �Kk

h
wo

k �Hkw
f
k

i
� �I�KkHk �bk ����

� ewf
k � fKk � �I�KkHk Lkg

h
wo

k �Hk ewf
k

i
� ��
�

The covariance relation ���� can also be written as

P
f

k � S
f

k �Pb�

k � ����

and this together with �	��� �
�� implies

fKk � �I�KkHk Lkg � P
f
kH

T
k

h
HkP

f
kH

T
k �Rk

i��
� ����

which proves ���� since ewo
k � wo

k here �observations are unbiased��

Another useful way to express the unbiased analysis equation is in terms of the quan�

tity

eewf

k � w
f

k �
�bk ��
�

��



which is the a posteriori unbiased forecast� From ���� we simply obtain

ewa
k � eewf

k �Kk

�
wo

k �Hk
eewf

k

�
� ����

��




 Implementation in practice

In this section we summarize the on�line and o��line bias estimation algorithms and

address some practical issues� We also present the results of a simple numerical

experiment performed with a linear one�dimensional shallow�water model�

��� Selection of observations for bias estimation�

The basic assumption leading to the ability to estimate forecast bias is that unbiased

observations are available for this purpose� In practical terms this means that obser�

vational bias must have been e�ectively removed� so that any remaining systematic

component of the time�averaged observed�minus�forecast residuals can be attributed

to forecast bias� This requirement is not realistic for all data types used in oper�

ational data assimilation systems� In practice one may therefore need to de�ne a

limited subset of observations to be used for the purpose of estimating forecast bias�

We will use the superscript notation j to indicate that a quantity is associated with

this restricted subset� In particular� woj
k denotes the vector of unbiased observations

at time tk� it is a subset of the full set of observations wo
k� Similarly let hj

k�H
j
k� and

R
j
k be the corresponding restrictions of the observation operator hk� the linearized

observation operator Hk� and the observation error covariance Rk� respectively�

��� Summary of the algorithms�

The o��line algorithm produces estimates of forecast bias based on stored output from

an assimilation system� The on�line algorithm� on the other hand� utilizes current

forecast bias predictions and updates in order to produce unbiased forecasts and

�




analyses� Bias estimates are based exclusively on observations which are considered

unbiased� The computational cost of bias estimation is roughly that of a single

solution of the analysis equation for a limited number of observations�

��



O��line forecast bias estimation�

bias prediction�

�b�
k � �bk�� � g��bk���w

a
k��� ����

ewf
k � wf

k �
�b�
k ����

bias update�

�bk � �b�
k � Lk

h
w

oj
k � h

j
k� ewf

k�
i

��	�

Lk � Sb�

k H
j
k

T
�
H

j
kS

b�

k H
j
k

T

�H
j
kS

f

kH
j
k

T

�R
j
k

���
����

On�line forecast bias estimation and correction�

forecast and bias prediction�

w
f
k � Ak ewa

k�� ����

�b�
k � �bk�� � g��bk��� ewa

k��� ��
�

ewf
k � w

f
k � �b�

k ����

bias update�

�bk � �b�
k �Lk

h
w

oj
k � h

j
k� ewf

k �
i

����

Lk � Sb�

k H
j
k

T
�
H

j
kS

b�

k H
j
k

T

�H
j
kS

f
kH

j
k

T

�R
j
k

���
��

�

eewf

k � w
f
k � �bk ��
��

analysis�

ewa
k � eewf

k �Kk

�
wo

k � hk� eewf

k�
�

��
��

Kk � S
f
kH

T
k

h
HkS

f
kH

T
k �Rk

i��
��
��
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��� Covariance modeling�

According to the theory presented in section 	� the on�line estimates are optimal when

S
f
k � P

f
k �Pb�

k � ��
	�

Sb�

k � Pb�

k � ��
��

where

P
f

k �
D
� ewf

k �wt
k�� ewf

k �wt
k�T

E
� ��
��

Pb�

k �
D
��b�

k � bf
k���b�

k � bf
k�T

E
� ��

�

Note that Sf
k would be the forecast error covariance in the optimal case if there were

no bias� or if the bias were precisely known and properly handled in the analysis� The

covariance Pf
k � on the other hand� is the optimal forecast error covariance in case of a

biased forecast model� and it is bounded from below by Sf
k� it is clearly not possible

to do as well when forecast bias is not precisely known�

In operational data assimilation systems forecast error covariances are approximated

on the basis of various simplifying assumptions about the forecast error �elds� For

example� it is usually assumed that height error correlations at �xed pressure levels

are isotropic� and that extra�tropical wind error �elds are in geostrophic balance with

the height errors� Remaining free parameters in the covariance formulations �such

as error standard deviations and spatial de�correlation length scales� can then be

estimated from past observed�minus�forecast residuals� although on�line estimation

of some parameters based on current data is possible as well �Dee ������

A similar direct modeling approach could be used to approximate the forecast bias

prediction error covariance Pb�

k � Use of the Kalman �lter recursions for these co�

��



variances in a practical application is not sensible� especially when forecast bias is

being predicted by means of a simple heuristic model� The assumptions underlying

covariance models for bias prediction errors �b�
k � b

f
k and for the random forecast

errors ewf
k � wt

k should be consistent� For example� it is natural to assume that the

systematic component of forecast error is approximately geostrophic as well in the

middle latitudes�

Parameters for approximating the forecast error covariance Pf
k should be estimated

from mean�zero observed�minus�forecast residuals

evk � wo
k � hk� ewf

k �� ��
��

since

Devk evT
k

E
� Rk �HkP

f
kH

T
k � ��
��

A simple prescription for the bias prediction error covariance in terms of the forecast

error covariance Pf
k might be

Sb�

k � �Pf
k � ���
�

with 
 � � � � a free parameter� Consistent with ��
	� one should then take

S
f

k � �����Pf

k� �����

With this covariance model the gains Kk and Lk are given in terms of Pf
k and Rk by

Kk � �����Pf
kH

T
k

h
�����HkP

f
kH

T
k �Rk

i��
� �����

Lk � �Pf
kH

j
k

T
�
H

j
kP

f
kH

j
k

T

�R
j
k

���
� �����

It should be relatively simple to use existing software for solving the analysis equations

with these modi�ed gains�

�	



The parameter � in our covariance model controls the stability of the bias estimates�

the relative size of the bias updates is proportional to this parameter� An alternative

interpretation is that � determines the extent to which observational information is

applied toward estimating the systematic rather than the random component of error�

In the limit when � � 
 there are no bias updates and the on�line algorithm reduces

to the usual analysis equation with a �xed �possibly zero� forecast bias correction�

On the other hand� when � � � the observations are used exclusively for estimating

forecast bias� the data assimilation scheme will then rely completely on the bias�

corrected forecast� This would be appropriate if the forecast error were in fact entirely

deterministic� Forecast error in practice consists of both systematic and random

components� under some circumstances their relative magnitudes may be predictable

and this information could be used to specify the parameter ��

��� A numerical experiment�

We conclude this section with a simple application of the algorithm in a data as�

similation system which is based on a discrete version of the linear one�dimensional

shallow�water model

�h

�t
� U

�h

�x
� H

�u

�x
�
fU

g
v � �

�

	
h � U

�hs
�x

� ���	�

�u

�t
� U

�u

�x
� fv � g

�h

�x
� �

�

	
u� �����

�v

�t
� U

�v

�x
� fu � �

�

	
v� �����

Equations ���	����� are obtained by linearizing the nonlinear two�dimensional shallow�

water equations at a �xed latitude 
 about a geostrophic basic state� assuming peri�

odic height� and wind�perturbations h� u� v depending on the longitudinal coordinate


 	 x 	 L only� The terms on the right�hand side represent linear damping and

��



topographic forcing� Model parameters for our experiments are chosen to roughly

represent quasi�geostrophic �

mb scales� 
 � 	�� �model latitude�� L � ��a sin


�length of the circle of latitude�� a � ���
���
�m �earth�s radius�� g � ����m�s��

�gravity constant�� f � �! sin � �Coriolis parameter�� ! � ���day �earth�s rotation

rate�� U � �
ms�� �mean zonal wind�� H � �


m �mean height�� and 	 � � days

�damping time scale�� The topography hs is a smoothed version of the actual to�

pography at 	�N� We solve ���	����� numerically on a uniformly spaced grid with

M ��	 points by means of the Richtmyer two�step formulation of the Lax�Wendro�

scheme �Richtmyer and Morton ���
�� using a time step of about �� minutes� For

quasi�geostrophic solutions of ���	����� the perturbation velocity component u is at

least an order of magnitude smaller than v� and we will therefore completely ignore

u in the presentation of our results�

The system ���	����� admits a stationary solution which is a function of the topog�

raphy hs� This stationary solution represents the climate of the true atmosphere in

our experiment� The forecast model is de�ned by changing the speci�cation of the

topography �by using data at 	�N instead�� resulting in a fairly large climate error�

Figure � shows the true topography �dotted curve� and forecast model topography

�solid curve� in the top panel� and the h� and v�components of the corresponding

climates in the center and bottom panels� respectively� These climates were obtained

by integrating ���	������ starting from a state of rest� for a period of �
 days� The

systematic error in the forecast model which is due to the misspeci�cation of topo�

graphic forcing will result in biased forecasts� the rms systematic height error in a

���hour forecast is roughly ��m in this setup�

A single realization of the true atmospheric state evolution is simulated by adding

��
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Figure �� Top panel� true topography �dotted curve� and forecast model
topography �solid curve�� Center panel� h�component of true
climate �dotted curve� and forecast model climate �solid curve��
Bottom panel� v�component of true climate �dotted curve� and
forecast model climate �solid curve��

a small� random forcing to the equations at each model time step� The forcing

consists of a random linear combination of the slow modes of the system ���	������

the amplitude of the mode with wavenumber 
 being normally distributed about

zero with standard deviation � exp���
���� � The parameter � is chosen such that

the typical magnitude of the random component of the ���hour forecast height error

is comparable to that of the systematic component of error� i�e�� about ��m� The

simulated observing network provides �� equally spaced height observations �at every

�




other grid location� and �
 observations of the meridional wind component v �at

every other grid location where hs � 
� every �� hours of simulation time� u is not

observed� The height� and wind�observation error standard deviations speci�ed in the

data assimilation scheme are 	
m and 	ms��� respectively� although for our single�

realization experiment we actually generate perfect observations�

 0   90E 180  90W  0  
−30

−20

−10

0

10

 

v 
(m

/s
)

 0   90E 180  90W  0  
−400

−300

−200

−100

0

100

200

 

h 
(m

) 
 

Figure �� True state �dotted curve�� bias�blind forecast �dashed curve�� and
bias�blind analysis �solid curve� after 	� hours of data assimilation�
The h�component is shown in the top panel� the v�component
in the bottom panel� Observations are taken every �� hours as
marked�

Rather than computing error covariances exactly in accordance with the theory� they

will be prescribed as in ���
� and ����� with ��
��� The forecast error covariance Pf
k

��



is modeled by assuming random isotropic height errors and geostrophically balanced

wind errors� Geostrophy in ���	����� is expressed by u � 
� v � g

f

�h

�x
� Thus� our

model for Pf
k is completely determined by two parameters� the height error standard

deviation �f
h �taken to be constant in time and space� and a length scale parameter l

for the spatial height error correlations �modeled by a simple power law�� No attempt

is made to tune or optimize these covariance parameters� we take �f
h ��
m �roughly

the rms norm of the ���hour forecast height error� and l � ��

km �roughly three

grid cells��

Figure � shows a typical snapshot of the bias�blind state estimates� obtained by

ignoring the forecast bias altogether� Heights are shown in the top panel� winds

�v�component only� in the bottom panel� The solid curves represent the analyses

produced at 	�h� The dashed curves show the forecast based on the previous ���h�

analysis� the dotted curves indicate the true state� and height� and wind�observations

are marked� The forecast bias is visible in these plots� particularly near the troughs

located to the east of the main topographic features� Note that the impact of the

observations is positive� in the sense that the analysis errors are signi�cantly smaller

than the forecast errors�

Estimates of forecast bias were produced simultaneously with the bias�blind state

estimates� based on all observations� In �gure 	 we show the bias prediction �dashed

curve� and the updated bias estimate �solid curve� after 	� hours of data assimilation�

together with the true forecast error �dotted curve�� The forecast error contains a

random as well as a systematic component� only the latter is represented by the bias

estimates� The bias�corrected state estimates are shown in �gure �� The analysis

increments are now much smaller than those for the bias�blind estimates� since the

��
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Figure 	� True forecast error �dotted curve�� bias prediction �dashed curve��
and updated bias estimate �solid curve� after 	� hours of data
assimilation� The h�component is shown in the top panel� the
v�component in the bottom panel�

forecast bias has been greatly reduced and only the random component of error is

being corrected in the analysis�

Figure � shows the rms error evolution in time for the bias�blind �dashed curves� and

for the bias�corrected �solid curves� state estimates� during the �rst �
 days of simu�

lation� Forecast as well as analysis errors� both for height and for wind components�

are reduced by more than a factor of two by application of the bias correction proce�

dure� The climate error in the assimilation is reduced even more� Climate error was
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Figure �� True state �dotted curve�� bias�corrected forecast �dashed curve�
and bias�corrected analysis �solid curve� after 	� hours of data
assimilation� The h�component is shown in the top panel� the
v�component in the bottom panel� Observations are taken every
�� hours as marked�

computed by simulating 	
 days of data assimilation� calculating the mean analyzed

state over the last �
 days of the assimilation� and comparing the result to the mean

true state over the same period� In �gure 
 we show the h� and v�components of

climate error for the assimilation run without bias correction �dashed curve�� for the

run with bias correction �solid curve�� as well as for a climate run of the forecast

model in which no data are assimilated �dotted curve�� The latter corresponds to the

di�erence between the model and true climates� as can be seen from Figure � as well�
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The rms climate height error associated with the bias�corrected analyses is 
���m�

compared to ���
m for the bias�blind analyses and ����m for the forecast model� the

corresponding rms climate wind errors �v�component� are 
���ms��� 
���ms��� and

���ms��� respectively�
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Figure �� Root�mean square error evolution for the bias�blind estimates
�dashed curve� and for the bias�corrected estimates �solid curve��
The horizontal axis represents time tk �in hours��
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Figure 
� Climate errors computed from 	
�day simulations without data
assimilation �dotted curve�� with data assimilation but without
bias correction �dashed curve�� and with data assimilation and on�
line bias correction �solid curve�� The h�component is shown in
the top panel� the v�component in the bottom panel�
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� Conclusion

It is well�recognized in practice that forecast models contain systematic errors which

can result in biased forecasts� Forecast bias may have a signi�cant impact on the

climatology of assimilated data sets� as well as on the instantaneous accuracy of a

particular analysis� The bias problem has been largely ignored� however� in the devel�

opment of data assimilation methodology� Statistical analysis methods are generally

derived under the assumption that forecast errors are strictly random and zero in the

mean� In actual implementations of these methods the error statistics are sometimes

adjusted in order to reduce analysis bias� but�as we showed in section ��this is an

ad�hoc remedy which is only partially e�ective� and which causes an increase in the

random component of analysis error� The only way to properly account for forecast

bias in a statistical analysis scheme is to do so explicitly� by estimating the bias and

then correcting the forecast prior to analysis�

We presented a rigorous method for estimating forecast bias in an atmospheric data

assimilation system based on an unbiased subset of the available observations� The

main components of our sequential bias estimation algorithm are already available in

existing statistical analysis systems� The added computational cost of incorporating

the algorithm into an operational system is roughly one additional solution of the

statistical analysis equation� for a limited number of observations� O��line forecast

bias estimates can be produced as well� using an existing analysis system and stored

output from a previous data assimilation run� We plan to perform bias estimation

experiments in the immediate future using the Goddard Earth Observing System

�Pfaendtner et al� ������

		



Forecast bias estimation merely represents the �rst step in addressing the bias problem

as it a�ects atmospheric data assimilation� Once estimates of forecast bias become

available they can be used to remove� or at least reduce� analysis bias� However� the

mechanisms responsible for generating forecast bias will cause the model diagnostics

to be �awed in many cases� This problem is critical when the output of the system is

to be used for climate research� which requires a continuous and unbiased record of

prognostic as well as diagnostic atmospheric variables�

Ultimately� routine production and monitoring of forecast bias estimates in an opera�

tional data assimilation system should lead to improvements in the formulation of the

forecast model itself� In the meantime it will be necessary to consider bias correction

methods in which model forcing is continuously being adjusted in order to compen�

sate for the e�ect of systematic errors in the forecast model� Saha ������ and Takacs

������ have developed bias correction schemes for statistical data assimilation� while

Derber ������ and Gri�th and Nichols ������ address the problem in the context of

the variational method� In future work we plan to develop bias correction methods

which are consistent with the framework provided by the present article�
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